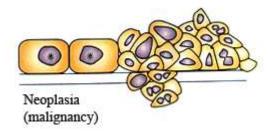

Chapter 5.3

Tissue Growth and Change

Normal Cell

Atrophy


Hyperplasia


Dysplasia

Metaplasia

Tissue Growth & Differentiation

Tissue growth may include

- increasing the number of cells
- increase the size of the existing cells
- reduce size of existing cells

Tissue Differentiation

- un-specialized tissues of embryo change into specialized mature cell types
- example: embryonic mesenchyme cells become muscle

How Tissue May Change

Hypertrophy

- enlargement of preexisting cells
- e.g. muscle grow through exercise

Hyperplasia

- tissue growth through cell multiplication
- e.g. endometrium during sexual cycle

Atrophy

- shrinkage of a tissue through a loss in cell size or number
- senile atrophy through normal aging
- disuse atrophy from lack of use (astronauts)

Neoplasia

- development of a tumor (neoplasm)
- maybe benign or malignant
- composed of abnormal, nonfunctional cells

Tissue Shrinkage and Death *

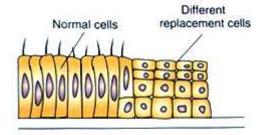
Metaplasia

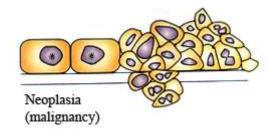
- changing from one type of mature tissue to another type of mature tissue
- E.g. / simple cuboidal tissue lining vagina before puberty will change to stratified squamous after puberty // note: the hormone estrogen will cause this change
- E.g. / pseudostratified columnar epithelium of bronchi of smokers to stratified squamous epithelium // note: toxins in smoke is the cause for this metaplasia


Abnormal Cell Growth

Normal Cell

Atrophy


Hyperplasia


Dysplasia

Metaplasia

Tissue Death (Necrosis VS Apoptosis)

Necrosis

- premature, pathological death of tissue due to trauma, toxins, or infections
- Always associated with inflammation (results in more extracellular fibers being produced – i.e. scar tissue)
- infarction sudden death of tissue when blood supply is cut off
- gangrene tissue necrosis due to insufficient blood supply
- decubitus ulcer bed sore or pressure sore /// pressure reduces blood flow to an area - a form of dry gangrene
- gas gangrene anaerobic bacterial infection /// bacterial growth produces gas

Tissue Death Necrosis VS Apoptosis

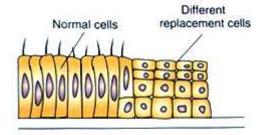
Apoptosis

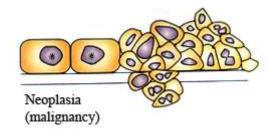
- programmed cell death / appropriate
- normal death of cells that occur after cells have completed their function
- best serves the body by dying so as to get out of the way
- not associated with inflammation
- Examples
 - loss of plasma cells and cytotoxic T cells after infection eliminated
 - mensis loss of endometrium following sexual cycle


Abnormal Cell Growth

Normal Cell

Atrophy


Hyperplasia


Dysplasia

Metaplasia

Stem Cell Controversy

- Embryonic stem cells research may lead to treatments for many type of diseases caused by loss of functional cell types // ESC are the "most plastic of all stem cell types"
 - ESC most likely to form new cardiac muscle cells, injured spinal cord, insulin-secreting cells

- skin and bone marrow stem cells have been used in therapy for years
- adult stem cells have limited developmental potential /// difficult to harvest and culture

Stem Cells

- stem cells undifferentiated cells that are not yet performing any specialized function
 - have potential to differentiate into one or more types of mature functional cells
- developmental plasticity diversity of mature cell types to which stem cells can give rise
- embryonic stem cells
 - totipotent have <u>potential to develop into any type of</u> <u>fully differentiated human cell //</u> source - cells of very early embryo
 - pluripotent can develop into any type of cell in the embryo // source - cells of inner cell mass of embryo

Stem Cells

- adult stem cells
 - undifferentiated cells of a tissue type in adults
 - multipotent bone marrow producing several blood cell types
 - unipotent most limited plasticity (e.g. producing only epidermal cells)